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A Receding Time Horizon Optimal Feedrate 
Control with Cross-Coupled Structure for Multiaxial Systems 

Gun Bok Lee* 
(Received September 5, I996) 

This work is concerned with the development of digital contouring controller for multiaxial 

servosystem. Digital optimal contouring controller is proposed to improve the contouring 

performance by coordinating each of the controllers of  multiple feed drives. The optimal control 

formulation explicitly includes the contour error in the performance index to be minimi~'ed. The 

contouring control is simulated for straight line and circular contours. Substantial improvement 

in contouring performance is obtained for a range of  contouring conditions. Both steady state 

and transient error measures have been considered. The simulation results show that the 

proposed controller reduces contouring errors considerably as compared to the conventional 

uncoupled control for biaxial systems. The presented study has established the potential of the 

proposed controller to improve contouring performance. The concepts used here seem to be 

general enough to be useful in other coordinated motions. 

Key W o r d s :  Receding Time Horizon, Contouring Control, Cross-Coupled Structure 

1. In troduct ion  

In multiaxal systems, the motion of each axis 

must be coordinated to achieve specific perfor- 

mance objectives. Coordinated motion where the 

motion of two or 'more axes needs to perform 

togethec is essential in many manufacturing 

processes, for example, machining by CNC 

machine tools, painting or welding using robots, 

IC wire bonding, printing, etc. Such objectives 

call for the design of contouring control systems 

for multiaxial systems. The contouring control 

involves decomposition of desired linear or 

curved contours into reference motion commands 

to be tracked by each axis and coordinated 

multiaxial motion controls. The system must be 

capable of following desired contours accurately 

by coordinating the motion along each axis. 

Many classical and modern control theories 

have focused on enhancing the performance of' 
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individual motion axis. The feedback controller 

for each axis is designed independently without 

regard to the motion of other axes. To obtain 

good contouring accuracy, each axial servomech- 

anism must accurately track the axis command 

input. However, for multiaxial applications, the 

individual axis control approach may result in 

degraded contouring performance for coordinated 

motion due to such factors as unsymmetrical 

disturbances, mismatch in axial dynamics, non- 

linear trajectories, etc. 

Many researchers have studied the motion coor- 

dination problem. The motivation mostly came 

from attempting to improve the contouring per- 

formance of machine tool feed drive systems. As 

for controller design for a single axis, Koren 

(1983) has provided guidelines for design of a 

position loop controller based on a first order 

model for a velocity loop. The position loop gain 

is recommended to be chosen to minimize the 

performance criteria of IAE (Integral of Absolute 

Error) in order to take into account properly the 

conflicting requirements of low steady state error 
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and low overshoot. Bollinger et a1.(1980) have 

noted that the following error for each axis is the 

most important dynamic error to be considered in 

contouring applications. They use feedforward 

compensation to reduce the following error. 

Doraiswami and Gulliver (1984) designed a 

robust controller consisted of  two dynamic ele- 

ments, a servocompensator and a stabilizing 

compensator. A hybrid simulation study with 

typical operating conditions for different contours 

shows superior performance of the controller 

orerv conventionally designed controllers. In 

Computer Numerical Control  machines, a desired 

path of feed drive is known beforehand. The 

knowledge has been used profitably for improved 

control system performance by Tomizuka et al for 

several applications. Tomizuka and Whitney 

(1975) presented a solution to the optimal dis- 

crete time finite preview problem using stochastic 

optimal control theory. The preview action has 

been shown experimentally (Tomizuka and Fung, 

1980; Tomizuka, 1989) to result in large reduc- 

tion in contour error. Tomizuka also developed a 

Zero Phase Error Tracking Controller(1987),  a 

kind of feedforward control schemes and a repeti- 

tive controller(1989, 1991), a sort of  learning 

control schemes, in the framework of a discrete 

time control. In applications to machine tool 

control(Tung and Tomizuka, 1994), he has 

shown that the control schemes enhance the track- 

ing capabil i ty by increasing the closed loop sys- 

tem bandwidth and consequently result in im- 

proved machining performance through reduction 

in contour errors. 

All  the preceding controllers result in indepen- 

dent or uncoupled control for each axis. Several 

approaches are presented below which couple the 

multiaxes together for design of the controllers. 

Sarachik and Ragazzini(1957) employed a mas- 

ter-slave cross-coupled structure between the two 

axes in a biaxial system. When the magnitude of 

the position error along one axis gets larger than 

a certain threshold, the other axis is slowed down. 

The control implemented by Sarachik et al leads 

to nonuniform velocity and will result in jerky 

motion. Koren and Ben Uri(1972) and Koren 

(1980) have proposed a symmetrical cross-cou- 

pied structure for improved contouring perfor- 

mance. A weighted contour error is combined 

with each of  the individual axis errors. It may be 

noted that this reference is the first work that uses 

the contour error explicitly in determining the 

corrective action. Koren and Lo (1991) developed 

a variable gain cross-coupled controller in which 

the gain in the contour error controller varied 

with the contour. Kulkarni and Srinivasan(1985) 

have also investigated the cross-coupled compen- 

sator scheme in detail. They developed different 

forms of contouring controller applying a correc- 

tive control action for each axis on the basis of 

contour error independently of the individual axis 

controllers. They also introduced an optimal 

control formulation which explicity includes the 

contour error in a performance index(1989). 

Recently, Chiu and Tomizuka (1994) presented a 

Lyapunov based controller synthesis approach. 

They defined a Lyapunov function including 

tracking error and contour error and constructed 

a control law guaranteeing exponential decrease 

of the Lyapunov function through a two step 

backstepping procedure. Mc Nab and Tsao(1994) 

defined an optimal control problem with a reced- 

ing time horizon, which gives the controller some 

preview information about the upcoming contour 

and allows the performance of the controller to be 

determined by the choices of the weighting on 

tracking error, contour error and control effort. 

In this paper, we propose a new discrete time 

optimal contouring controller for general multiax- 

al systems. Proport ional  position loop compen- 

sator is designed by conventional techniques in- 

dependent of the contouring controller since most 

of commercially available multiaxial systems are 

already equipped with P-control .  The contouring 

controller provides an addit ional corrective 

action to specifically improve the contouring 

performance. The controller employs full state 

feedback to minimize a performance index which 

explicitly weights on quadratic contouring error 

and control efforta future finite horizon, and 

therefore combines contour tracking and preview 

action in a single framework. Since the control 

concepts developed here are general enough, the 

controller does not need to be reformulated for 
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use on different contours and will be useful in 

other applications. Simulation studies demon- 

strate that the control action designed by using 

the receding time horizon formulation gives im- 

proved contouring performances in spite of a 

variety of error sources such as mismatched 

dynamics between axes, disturbances, and non- 

linear trajectories in contour tracking. 

2. Computation of Contour Error 

Figure 1 represents the geometric relationship 

between the tracking error e and the contour error 

s. The tracking error e, is the difference between 

the commanded position Pr and the actual posi- 

tion p.  The contour error E is defined as the point 

on the contour nearest the actual position /De, 

minus the actual position P. In general, the 

contour error for curved contours cannot be 

directly computed during real-time motion. 

Therefore, a contour error estimate suitable for 

real-time computation for arbitrary curved con- 

tour is required and derived as follows: 

Tracking error vector: 

e = P r - - P  (l) 

Contour error vector: 

~: = P c -  P (2) 
Unit velocity vector: 

p~ ,5 

Average unit velocity vector: 

17 P r + P  
= fTPrr+ ll (4) 

From Eqs. (1) and (2), 

S 
F i g .  1 

Y 

- -  D e s i r e d  p a D h  

- -  A c t u e ~ l  p a t h  

X 

Tracking and contouring errors on an 
arbitrary curved contour 

s = P ~ -  Pr + e (5) 

Let the transition time from pc to p~ be denot- 

ed as z/t, and the average velocity during that 

time as l'~ve, that is 

1 �9 
V ~ e = T ( p ~ + P  ) (6) 

Then, the contour error vector can be approx- 

imated as 

e = e -  ( P ~ -  P~) ~ - e -  V ~ d  ~l, (7) 

Since z:/l should be determined such that II s H is 

a minimum, solving ~ }1 g f 2 =  0 to obtain the 
(?(At) 

expression for Z/t and substituting it into Eq. (7) 

yields a contour error estimate. In two dimen- 

sional case, V~o~=[] Vao~ I Vx,  I V~o~ I-V,] r and 
taking the fore-mentioned procedure, e is sim- 

plified as 

8=[  : ;  ] ~ [  Vy(exVy-cy~/x) ] (8) 
. - V x ( e ~ V y - e , V , )  

For further approximation of e, V will be 

replaced by V,(unit  command velocity vector). 

Then e will be represented by a combination of 

reference command inputs and states and it will 

be used in formulating a performance index for 

conlroller design in the next section. 

3. Contouring Control 

It is easily seen in Fig. I that the contour error 

may be zero even if the tracking error along each 

R(k) i-~ I .,~ L .~)  
v~e) v 

I-I ~ .  ),_/ ~ , ~ ) _ ) L ~ ,  

Fig. 2 Block diagram of contouring controller 
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axis is not. This suggests the possibility that an 

accurate contour tracking can b e  achieved 

through direct involvement of contour error into 

controller design rather than individual axis per- 

formance improvement. This section describes the 

development of contouring control algorithm for 

improved contouring performance. A receding 

time horizon LQ control approach will be 

applied to enhance contouring accuracy by for- 

mulating a penalty function that includes contour 

error directly and cross-coupled control effort 

over a finite future time window. 

3.1 Contouring control structure 
Figure 2 is a block diagram representing the 

contouring control structure of multiaxial motion 

control system. A desired path, R ( k ) ,  is 

decomposed into individual axis commands, R~ 

(k) ( i : x ,  y, z, "" , q) by an interpolator and a 

position loop comensator for the individual axis 

constitutes closed loop by proport ional  control- 

ler, Kpi, as in the conventional structure. A 

contouring compensator provides an addit ional 

control input, u~(k),  to the closed velocity loop 

of each axis in order to improve the contouring 

performance. 

In the figure, the input to the velocity loop, Vci 

( i : x ,  y, z, "", q) has the following form, 

V c i ( k ) : K m e ~ + u ~ ( k ) ,  i = x ,  y, z, "", q 
: K , ~ ( R i ( k ) - p ~ ( k ) )  + u i ( k )  (9) 

Approximating the closed velocity loop to the 

first order model as done in the conventional 

motion control system, the discrete time state 

equations which give the relation between the 

control input Vc~(k), and the velocity v~(k), the 

position Pi(k) are as follows: 

v i ( k + l )  ] = [ 0  c -r~/r' J L v i ( k )  ] 
+ [  K ~ ( T ~ - r ~ ( l - e  -T~/~') ] V~,(k) (10) 

where z'i, K~,. are the time constant and the steady 

state gain of the velocity loop, respectively and T~ 

represents a sampling interval. Putting state 

vectors of each axis together results in the follow- 

ing state vector and control input vector. 

xp (k) =[px(k )  vx (k) py(k) vy(k) 

�9 "pq(k)  vq(k)] r (1 l) 

vc (k )  =[Vex(k )  Vcy(k) ... V~q(k)] ~ (~2) 

From Eqs. (10), ( l l ) ,  (12) and the contour 

error equation expressed as a combination of 

states and reference command vectors, the result- 

ing state equation and output equation can be 

written as 

x , ( k +  l) = A p x p ( k )  +BpVc(k )  (13) 

~(k) = Cpx~ (k) + CrR (k) 

where R ( k ) = [ R x ( k ) R y ( k )  "" Rq(k) ]  r. 

3.2 A Receding time horizon LQ optimal 
control approach 

In this section, a receding time horizon linear 

quadratic optimal control approach is formulated 

for multiaxial contour tracking using the state 

and output equations established in the previous 

section and a contouring control input vector u 

(k) is obtained in that framework. 

From Eqs. (9), (11), and (12) 

Vc(k) = - K p x p + K c R ( k )  + u ( k )  (14) 

where K ,  and Kc are matrices of appropriate 

dimension whose elements are composed of Km 

and u (k) : [ u x ( k )  uy(k)  "" uq(k)]  r. Substitut- 

ing Eq. (14) into Eq. (13) leads to the following 

modified state and output equations. 

x p ( k +  1) : ( A p - B , K p ) x , ( k )  + B p K c R ( k )  

+ B , u  (k) 
(k) = C~xp (k) + CrR (k) (15) 

To account for contouring, the performance 

index to be minimized is of the following form. 

k + N  --1 

J = e 2 ( k + N ) S ~ +  ~. [QeZ(i) 
i - - k  

+ ur  (i) R u ( i )  ] (16) 

The first term weights the final contour error 

and the first term in the braket is an explicit 

measure of the contour error, while the second 

term weights the square of the contouring control 

inputs. N represents the length of a preview 

horizon. 

By applying the principle of optimality similar- 

ly to the basic finite horizon LQ tracking prob- 

lem, the optimal input is determined as follows: 

u (k) -- - [ B ~ H p , ( k +  1) B~ 
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+ R]-IB~Hpp (k + l) [ (A t , -  BpKt,) xp (k) 
+ BpK~R(k) ]+ Hpr(k+ l) ] (17) 

where/4~op (k) .and Hpr (k) can be obtained from 

the following Riccati equations 

Hpp (i) = ( A p -  B~Kp) THpp (i + 1). 
( A p -  BpK~) 
- ( A ~ -  BpK~) rHpp (i + 1) Bp" 
[R+BfHp~(i+ l) B p ] - t B f  �9 

Hpp(i+ 1) ( A , - B , K p )  
+ CfQC~ (I 8) 

Hpr( i) = ( A p -  BpKp) r[ I -  Hpp(i + l ) Bp. 
[R+B[Hm,( i+ 1)Bo] -~" 
B~Hpr(i + 1) +[ CrQCr 
+ (Ap-BpKp) rHpp ( i +  1). 

[ I -B , , [R+BfHpt , ( i+  l )Bp]  -1" 

BfHpt,(i+l)]Bt, K~]R(i) (19) 

with terminal conditions 

/L~p(k +m = C[S~C~, (20) 

H,~ch+m = C[S~CpR (k + N) (21 ) 

As seen in the above equations, the optimal 

control input is calculated at each time step given 

the contour trajectory over the preview window 

N. 

4. Contouring Control for Biaxial 
System 

A biaxial motion control system is considered 

in this section to validate the developed contour- 

ing control algorithm. The command trajectories 

used are atraight line contours and circular con- 

tours since arbitrary contours are typically ap- 

proximated by straight lines and circular seg- 

ments. 

4.1 Dynamic model for biaxial system 
The design of control algorithm and its perfor- 

mance ewduation require the model of  a plant. In 

this work, dynamic models are obtained theoreti- 

cally using experimental data for feed drives of 

CNC machining center equipped with high speed 

X - Y  table. Each feed drive system of  the X 

- y table includes a 3-phase AC servomotor, a 

5mm/pitch ball screw, anti-  friction roller bear- 

ing slide, and a tachometer and an encoder for 

motor shaft velocity and position feedback, 

respectively. 

The feed drive servo for each axis uses an 

Yaskawa velocity servopack that provides digital 

commutation for the AC motor, PWM type cur- 

rent amplification, analog proport ional  plus inte- 

gral (PI) velocity feedback controk Position 

sensing is provided by a 1500pulses/rev optical 

shaft encoder. The pulse signal is multiplied 4 

times after decoding and sent to a pulse counter. 

The signal from the counter is finally read by a 

Data Acquisit ion Board each sampling interval. 

Then, the linear resolution of the X-Y table is 1/ 

1200mm. 

The closed velocity loop was excited by a I .  0 V 

step input as a test input for a velocity command. 

The input and output signals were recorded at a 

sampling frequency of 5000 Hz for 1024 samples. 

The response is shown in Fig. 3. It is seen that the 

response has higher order dynamic characteristics. 

For  simplicity, the system is modeled approx- 

imately as a second order lag. The parameters of 

the second order model are obtained from the 

experimental data. The continuous time model 

derived as below has the natural frequency wn the 

damping ratio ~', and the steady state gain kv at 

6389.5 (rad/sec) ,  0. 573 I, and 4.5, respectively. 

kvw~o (22) 
Gx(s) = Gy(s) -~ s2+2~w,s+w~ 

Then, the above second order model is further 

approximated to the following first order model. 

kv (23) Gx(s) = G / s )  -~ r~s + l 

where rv is 0.0003. 

Figure 3 compares the responses of the experi- 

mental system and its approximated second and 

first order models. The first order model is then 

converted to the equivalent discrete-time version 

using Eq. (10). 

4.2 Contouring performance evaluation 
The effectiveness of the contouring controllers 

proposed above is studied by means of digital 

simulations of the dynamics of the drives and the 

controllers. A sampling interval of  1.0 mil- 

lisecond is used for implementation of  the digital 
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controllers. The feed drive dynamics of Eq. (22) 

are integrated employing a 4th order Runge 

-Kutta algorithm with a time step of 0 .2  msec. 

The contouring control is exercised for straight 

line and circular contours. Both contours are 

implemented at the same traversing speed of 30m/ 

min. The responses of the contouring control and 

6 

0 

Fig. 3 

1 2 3 4 5 
Time ( X,IO "= sec) 

Experimental velocity loop response to 1 volt 
step input of vref and its approximated model 
responses 

50 

40  

10 .... ] 

1~ 2;~ 3'o 4'o so 
x (rnrn) 

Fig. 4(a) Straight line contour response for indepen- 
dent axis control and contouring control with 
matched dynamics 
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Fig. 4(b) Straight line contour error response for 
independent axis control and contouring 
control with matched dynamics 

the independent axis control are compared for the 

straight line contours in Figs. 4 and 5.1n Figs. 4 

(a), and (b), where the feed drive systems of both 

X and Y axes have matched dynamics, both 

systems result in zero steady-state error while, in 

Figs. 5(a) ,  (b) with t l~  two axes having 50% 

mismatched dynamics, the errors of the contour- 

ing control are reduced to less than one tenth of 

those of the independent axes control  

Figs. 6(a) ,  (b), and (c) show the tracking 

responses for the circular contours of radius of 

50mm by the two control schemes When both X 

and Y feed drive systems have matched dynamics. 

The initial position of the feed drive is on the 

commanded trajectory. The resulting variations of 

the contour errors are plotted in Fig. 6(c). The 

independent axis control llas considetable magni- 

tude of contour error everl with the matched axis 

dynamics as shown in Fig. 6(a) ,  whereas the 

contouring control improves the corresponding 

50 

J >. 

~b 2b ~ 4b 50 
x (rnm) 

Fig. 5(a) Straight line contoU~ response for indepen- 
dent axis control and cotltouring control with 
mismatched dynamics 
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Fig. 5(b) Straight line contour error response for 
independent axis control and contouring 
control with mismatched dynamics 
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error measures remarkably as seen in Figs. 6 (b), 

and (c). 

The same circular contour was implemented 

with simtdations of the two control schemes when 

the X and Y feed drive dynamics has 50% mismat- 

ched parameter values, The resulting behaviors 

are plotted in Figs. 7 (a), (b), and (c). As seen in 

Fig. 7(a), the independent axes control reponse 

has an elliptically distorted contour shape due to 

the mismatched dynamics. However, the com- 

manded circular shape is recovered through the 

improved contouring performance of the contour- 

2:00 200 

~.150 

~ 100 

50 

o, go 16o ~o 2oo 
x ~rnml 

Fig. 6(a) Circular contour response for independent 
axis control with matched dynamics 
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Fig. 6(b) Circular contour response |~r contouring 
control with matched dynamics 
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Fig, 6(e) Circular contour error responses for in- 
dependent axis control and contouring con- 
trol with matched dynamics 
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ing controller in Fig. 7(b).  We see that the 

contouring controller enhances the contouring 

performance by about a factor of  ten over the 

independent axes controller in Fig. 7 (c). 

In a receding time horizon optimal control 

formulation, the main issues are the selection of  

an appropriate index of performance, weighting 

factors, and a preview length involved. Figure 8 

shows the simulated responses of the circular 

contour error for various weighting factors Se, 
and Q. The figure shows that the increase of the 

weighting factors on state variables results in 

lower radial  errors as expected. However, as 

shown in the Fig. 8, larger values in Se, and Q 

result in more oscillatory behavior of the contour 

error. In fact, an appropriate  choice of the weight- 

ing factors should involve compromise between 

increase in accuracy and speed of response and 

reduction in damping. 

5. Conclusion and Recommendation 
for Further Work 

In order to enhance the contouring perfor- 

mance for multiaxial motion, an additive cor- 

rectional action is introduced. The receding time 

horizon LQ controller has been developed and 

applied by formulating the performance index 

that includes the contour error and the control 

effort, over a finite future time window. The 

developed controller was evaluated by simulation 

based on low order dynamic models of the feed 

drives in a biaxial motion system. Extensive eval- 

uation for straight line and circular contours has 

shown their effectiveness in reducing contour 

errors as compared to the independent axes con- 

troller. The extent of improvement is much 

greater when the dynamics of the feed drives are 

not matched. The design parameters needed to 

adjust performance are limited to relative weight 

between the contour error and the control effort, 

and the preview length. The results show that 

more weighting on the contour error results in 

smaller contour errors. 

The contouring trajectories considered here 

involve biaxial motion. Extensions of the devel- 

oped controllers for contouring motion in three 

-dimensional  space and for different two-dimen- 

sional contours such as parabolic contours are a 

logical next step. Also, the performance evalua- 

tion through detailed experimental work should 

be conducted. There are many extensions which 

can be applied to the receding horizon LQ 

approach employed in this work. The index of 

performance could incorporate integral and /o r  

differential control actions by introducing aug- 

mented state equations and weighting matrices. 

The control concepts developed here are gen- 

eral enough to be useful in many applications. 

Those are coordinate measurement machines, 

multiple degree-of-freedom robots, chemical 

process control that needs to coordinate the vari- 

ables of temperature, flow rate and pressure, etc. 

The direct approach to maintain coordination of 

the outputs of the different control loops should 

be useful in all those applications. 
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